1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
//! A raw queue interface for Twizzler, making no assumptions about where the underlying headers and
//! circular buffers are located. This means you probably don't want to use this --- instead, I
//! suggest you use the wrapped version of this library, twizzler-queue, since that actually
//! interacts with the object system.
//!
//! This library exists to provide an underlying implementation of the concurrent data structure for
//! each individual raw queue so that this complex code can be reused in both userspace and the
//! kernel.
//!
//! The basic design of a raw queue is two parts:
//!
//!   1. A header, which contains things like head pointers, tail pointers, etc.
//!   2. A buffer, which contains the items that are enqueued.
//!
//! The queue is an MPSC lock-free blocking data structure. Any thread may submit to a queue, but
//! only one thread may receive on that queue at a time. The queue is implemented with a head
//! pointer, a tail pointer, a doorbell, and a waiters counter. Additionally, the queue is
//! maintained in terms of "turns", that indicate which "go around" of the queue we are on (mod 2).
//!
//! # Let's look at an insert
//! Here's what the queue looks like to start with. The 0_ indicates that it's empty, and turn is
//! set to 0.
//! ```text
//!  b
//!  t
//!  h
//! [0_, 0_, 0_]
//! ```
//! When inserting, the thread first reserves space:
//! ```text
//!  b
//!  t
//!      h
//! [0_, 0_, 0_]
//! ```
//! Then it fills out the data:
//! ```text
//!  b
//!  t
//!      h
//! [0X, 0_, 0_]
//! ```
//! Then it toggles the turn bit:
//! ```text
//!  b
//!  t
//!      h
//! [1X, 0_, 0_]
//! ```
//! Next, it bumps the doorbell (and maybe wakes up a waiting consumer):
//! ```text
//!      b
//!  t
//!      h
//! [1X, 0_, 0_]
//! ```
//!
//! Now, let's say the consumer comes along and dequeues. First, it checks if it's empty by
//! comparing tail and bell, and finds it's not empty. Then it checks if it's the correct turn. This
//! turn is 1, so yes. Next, it remove the data from the queue:
//! ```text
//!      b
//!  t
//!      h
//! [1_, 0_, 0_]
//! ```
//! And then finally it increments the tail counter:
//! ```text
//!      b
//!      t
//!      h
//! [1_, 0_, 0_]
//! ```

#![cfg_attr(test, feature(test))]
#![cfg_attr(not(any(feature = "std", test)), no_std)]

use core::{
    cell::UnsafeCell,
    marker::PhantomData,
    sync::atomic::{AtomicU32, AtomicU64, Ordering},
};

use twizzler_abi::marker::BaseType;
#[derive(Clone, Copy, Default, Debug)]
#[repr(C)]
/// A queue entry. All queues must be formed of these, as the queue algorithm uses data inside this
/// struct as part of its operation. The cmd_slot is used internally to track turn, and the info is
/// used by the full queue structure to manage completion. The data T is user data passed around the
/// queue.
pub struct QueueEntry<T> {
    cmd_slot: u32,
    info: u32,
    data: T,
}

impl<T> QueueEntry<T> {
    #[inline]
    fn get_cmd_slot(&self) -> u32 {
        unsafe { core::mem::transmute::<&u32, &AtomicU32>(&self.cmd_slot).load(Ordering::SeqCst) }
    }

    #[inline]
    fn set_cmd_slot(&self, v: u32) {
        unsafe {
            core::mem::transmute::<&u32, &AtomicU32>(&self.cmd_slot).store(v, Ordering::SeqCst);
        }
    }

    #[inline]
    /// Get the data item of a QueueEntry.
    pub fn item(self) -> T {
        self.data
    }

    #[inline]
    /// Get the info tag of a QueueEntry.
    pub fn info(&self) -> u32 {
        self.info
    }

    /// Construct a new QueueEntry. The `info` tag should be used to inform completion events in the
    /// full queue.
    pub fn new(info: u32, item: T) -> Self {
        Self {
            cmd_slot: 0,
            info,
            data: item,
        }
    }
}

/// The base info structure stored in a Twizzler queue object. Used to open Twizzler queue objects
/// and create a [Queue].
#[repr(C)]
pub struct QueueBase<S, C> {
    pub sub_hdr: usize,
    pub com_hdr: usize,
    pub sub_buf: usize,
    pub com_buf: usize,
    _pd: PhantomData<(S, C)>,
}

impl<S, C> BaseType for QueueBase<S, C> {
    fn init<T>(_t: T) -> Self {
        todo!()
    }

    fn tags() -> &'static [(
        twizzler_abi::marker::BaseVersion,
        twizzler_abi::marker::BaseTag,
    )] {
        todo!()
    }
}

#[repr(C)]
/// A raw queue header. This contains all the necessary counters and info to run the queue
/// algorithm.
pub struct RawQueueHdr {
    l2len: usize,
    stride: usize,
    head: AtomicU32,
    waiters: AtomicU32,
    bell: AtomicU64,
    tail: AtomicU64,
}

impl RawQueueHdr {
    /// Construct a new raw queue header.
    pub fn new(l2len: usize, stride: usize) -> Self {
        Self {
            l2len,
            stride,
            head: AtomicU32::new(0),
            waiters: AtomicU32::new(0),
            bell: AtomicU64::new(0),
            tail: AtomicU64::new(0),
        }
    }

    #[inline]
    fn len(&self) -> usize {
        1 << self.l2len
    }

    #[inline]
    fn is_full(&self, h: u32, t: u64) -> bool {
        (h & 0x7fffffff) as u64 - (t & 0x7fffffff) >= self.len() as u64
    }

    #[inline]
    fn is_empty(&self, bell: u64, tail: u64) -> bool {
        (bell & 0x7fffffff) == (tail & 0x7fffffff)
    }

    #[inline]
    fn is_turn<T>(&self, t: u64, item: *const QueueEntry<T>) -> bool {
        let turn = (t / (self.len() as u64)) % 2;
        let val = unsafe { &*item }.get_cmd_slot() >> 31;
        (val == 0) == (turn == 1)
    }

    #[inline]
    fn consumer_waiting(&self) -> bool {
        (self.tail.load(Ordering::SeqCst) & (1 << 31)) != 0
    }

    #[inline]
    fn submitter_waiting(&self) -> bool {
        self.waiters.load(Ordering::SeqCst) > 0
    }

    #[inline]
    fn consumer_set_waiting(&self, waiting: bool) {
        if waiting {
            self.tail.fetch_or(1 << 31, Ordering::SeqCst);
        } else {
            self.tail.fetch_and(!(1 << 31), Ordering::SeqCst);
        }
    }

    #[inline]
    fn inc_submit_waiting(&self) {
        self.waiters.fetch_add(1, Ordering::SeqCst);
    }

    #[inline]
    fn dec_submit_waiting(&self) {
        self.waiters.fetch_sub(1, Ordering::SeqCst);
    }

    #[inline]
    fn reserve_slot<W: Fn(&AtomicU64, u64)>(
        &self,
        flags: SubmissionFlags,
        wait: W,
    ) -> Result<u32, QueueError> {
        let h = self.head.fetch_add(1, Ordering::SeqCst);
        let mut waiter = false;
        let mut attempts = 1000;
        loop {
            let t = self.tail.load(Ordering::SeqCst);
            if !self.is_full(h, t) {
                break;
            }

            if flags.contains(SubmissionFlags::NON_BLOCK) {
                return Err(QueueError::WouldBlock);
            }

            if attempts != 0 {
                attempts -= 1;
                core::hint::spin_loop();
                continue;
            }

            if !waiter {
                waiter = true;
                self.inc_submit_waiting();
            }

            let t = self.tail.load(Ordering::SeqCst);
            if self.is_full(h, t) {
                wait(&self.tail, t);
            }
        }

        if waiter {
            self.dec_submit_waiting();
        }

        Ok(h & 0x7fffffff)
    }

    #[inline]
    fn get_turn(&self, h: u32) -> bool {
        (h / self.len() as u32) % 2 == 0
    }

    #[inline]
    fn ring<R: Fn(&AtomicU64)>(&self, ring: R) {
        self.bell.fetch_add(1, Ordering::SeqCst);
        if self.consumer_waiting() {
            ring(&self.bell)
        }
    }

    #[inline]
    fn get_next_ready<W: Fn(&AtomicU64, u64), T>(
        &self,
        wait: W,
        flags: ReceiveFlags,
        raw_buf: *const QueueEntry<T>,
    ) -> Result<u64, QueueError> {
        let mut attempts = 1000;
        let t = self.tail.load(Ordering::SeqCst) & 0x7fffffff;
        loop {
            let b = self.bell.load(Ordering::SeqCst);
            let item = unsafe { raw_buf.add((t as usize) & (self.len() - 1)) };

            if !self.is_empty(b, t) && self.is_turn(t, item) {
                break;
            }

            if flags.contains(ReceiveFlags::NON_BLOCK) {
                return Err(QueueError::WouldBlock);
            }

            if attempts != 0 {
                attempts -= 1;
                core::hint::spin_loop();
                continue;
            }

            self.consumer_set_waiting(true);
            let b = self.bell.load(Ordering::SeqCst);
            if self.is_empty(b, t) || !self.is_turn(t, item) {
                wait(&self.bell, b);
            }
        }

        if attempts == 0 {
            self.consumer_set_waiting(false);
        }
        Ok(t)
    }

    fn setup_rec_sleep_simple(&self) -> (&AtomicU64, u64) {
        // TODO: an interface that undoes this.
        self.consumer_set_waiting(true);
        let b = self.bell.load(Ordering::SeqCst);
        (&self.bell, b)
    }

    fn setup_send_sleep_simple(&self) -> (&AtomicU64, u64) {
        // TODO: an interface that undoes this.
        self.submitter_waiting();
        let t = self.tail.load(Ordering::SeqCst);
        (&self.tail, t)
    }

    fn setup_rec_sleep<'a, T>(
        &'a self,
        sleep: bool,
        raw_buf: *const QueueEntry<T>,
        waiter: &mut (Option<&'a AtomicU64>, u64),
    ) -> Result<u64, QueueError> {
        let t = self.tail.load(Ordering::SeqCst) & 0x7fffffff;
        let b = self.bell.load(Ordering::SeqCst);
        let item = unsafe { raw_buf.add((t as usize) & (self.len() - 1)) };
        *waiter = (Some(&self.bell), b);
        if self.is_empty(b, t) || !self.is_turn(t, item) {
            if sleep {
                self.consumer_set_waiting(true);
                let b = self.bell.load(Ordering::SeqCst);
                *waiter = (Some(&self.bell), b);
                if !self.is_empty(b, t) && self.is_turn(t, item) {
                    return Ok(t);
                }
            }
            Err(QueueError::WouldBlock)
        } else {
            Ok(t)
        }
    }

    #[inline]
    fn advance_tail<R: Fn(&AtomicU64)>(&self, ring: R) {
        let t = self.tail.load(Ordering::SeqCst);
        self.tail.store((t + 1) & 0x7fffffff, Ordering::SeqCst);
        if self.submitter_waiting() {
            ring(&self.tail);
        }
    }

    #[inline]
    fn advance_tail_setup<'a>(&'a self, ringer: &mut Option<&'a AtomicU64>) {
        let t = self.tail.load(Ordering::SeqCst);
        self.tail.store((t + 1) & 0x7fffffff, Ordering::SeqCst);
        if self.submitter_waiting() {
            *ringer = Some(&self.tail);
        }
    }
}

/// A raw queue, comprising of a header to track the algorithm and a buffer to hold queue entries.
pub struct RawQueue<T> {
    hdr: *const RawQueueHdr,
    buf: UnsafeCell<*mut QueueEntry<T>>,
}

bitflags::bitflags! {
    /// Flags to control how queue submission works.
    pub struct SubmissionFlags: u32 {
        /// If the request would block, return Err([SubmissionError::WouldBlock]) instead.
        const NON_BLOCK = 1;
    }

    /// Flags to control how queue receive works.
    pub struct ReceiveFlags: u32 {
        /// If the request would block, return Err([ReceiveError::WouldBlock]) instead.
        const NON_BLOCK = 1;
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
/// Possible errors for submitting to a queue.
pub enum QueueError {
    /// An unknown error.
    Unknown,
    /// The operation would have blocked, and non-blocking operation was specified.
    WouldBlock,
}

impl<T: Copy> RawQueue<T> {
    /// Construct a new raw queue out of a header reference and a buffer pointer.
    /// # Safety
    /// The caller must ensure that hdr and buf point to valid objects, and that the lifetime of the
    /// RawQueue is exceeded by the objects pointed to.
    pub unsafe fn new(hdr: *const RawQueueHdr, buf: *mut QueueEntry<T>) -> Self {
        Self {
            hdr,
            buf: UnsafeCell::new(buf),
        }
    }

    #[inline]
    fn hdr(&self) -> &RawQueueHdr {
        unsafe { &*self.hdr }
    }

    // This is a bit unsafe, but it's because we're managing concurrency ourselves.
    #[allow(clippy::mut_from_ref)]
    #[inline]
    fn get_buf(&self, off: usize) -> &mut QueueEntry<T> {
        unsafe {
            (*self.buf.get())
                .add(off & (self.hdr().len() - 1))
                .as_mut()
                .unwrap()
        }
    }

    /// Submit a data item of type T, wrapped in a QueueEntry, to the queue. The two callbacks,
    /// wait, and ring, are for implementing a rudimentary condvar, wherein if the queue needs to
    /// block, we'll call wait(x, y), where we are supposed to wait until *x != y. Once we are done
    /// inserting, if we need to wake up a consumer, we will call ring, which should wake up anyone
    /// waiting on that word of memory.
    pub fn submit<W: Fn(&AtomicU64, u64), R: Fn(&AtomicU64)>(
        &self,
        item: QueueEntry<T>,
        wait: W,
        ring: R,
        flags: SubmissionFlags,
    ) -> Result<(), QueueError> {
        let h = self.hdr().reserve_slot(flags, wait)?;
        let buf_item = self.get_buf(h as usize);
        *buf_item = item;
        let turn = self.hdr().get_turn(h);
        buf_item.set_cmd_slot(h | if turn { 1u32 << 31 } else { 0 });

        self.hdr().ring(ring);
        Ok(())
    }

    /// Receive data from the queue, returning either that data or an error. The wait and ring
    /// callbacks work similar to [RawQueue::submit].
    pub fn receive<W: Fn(&AtomicU64, u64), R: Fn(&AtomicU64)>(
        &self,
        wait: W,
        ring: R,
        flags: ReceiveFlags,
    ) -> Result<QueueEntry<T>, QueueError> {
        let t = self
            .hdr()
            .get_next_ready(wait, flags, unsafe { *self.buf.get() })?;
        let buf_item = self.get_buf(t as usize);
        let item = *buf_item;
        self.hdr().advance_tail(ring);
        Ok(item)
    }

    pub fn setup_sleep<'a>(
        &'a self,
        sleep: bool,
        output: &mut Option<QueueEntry<T>>,
        waiter: &mut (Option<&'a AtomicU64>, u64),
        ringer: &mut Option<&'a AtomicU64>,
    ) -> Result<(), QueueError> {
        let t = self
            .hdr()
            .setup_rec_sleep(sleep, unsafe { *self.buf.get() }, waiter)?;
        let buf_item = self.get_buf(t as usize);
        let item = *buf_item;
        *output = Some(item);
        self.hdr().advance_tail_setup(ringer);
        Ok(())
    }

    #[inline]
    pub fn setup_sleep_simple(&self) -> (&AtomicU64, u64) {
        self.hdr().setup_rec_sleep_simple()
    }

    #[inline]
    pub fn setup_send_sleep_simple(&self) -> (&AtomicU64, u64) {
        self.hdr().setup_send_sleep_simple()
    }
}

unsafe impl<T: Send> Send for RawQueue<T> {}
unsafe impl<T: Send> Sync for RawQueue<T> {}

#[cfg(any(feature = "std", test))]
/// Wait for receiving on multiple raw queues. If any of the passed raw queues can return data, they
/// will do so by writing it into the output array at the same index that they are in the `queues`
/// variable. The queues and output arrays must be the same length. If no data is available in any
/// queues, then the function will call back on multi_wait, which it expects to wait until **any**
/// of the pairs (&x, y) meet the condition that *x != y. Before returning any data, the function
/// will callback on multi_ring, to inform multiple queues that data was taken from them. It expects
/// the multi_ring function to wake up any waiting threads on the supplied words of memory.
///
/// Note that both call backs specify the pointers as Option. In the case that an entry is None,
/// there was no requested wait or wake operation for that queue, and that entry should be ignored.
///
/// If flags specifies [ReceiveFlags::NON_BLOCK], then if no data is available, the function returns
/// immediately with Err([QueueError::WouldBlock]).
///
/// # Rationale
/// This function is here to implement poll or select like functionality, wherein a given thread or
/// program wants to wait on multiple incoming request channels and handle them itself, thus cutting
/// down on the number of threads required. The maximum number of queues to use here is a trade-off
/// --- more means fewer threads, but since this function is linear in the number of queues, each
/// thread could take longer to service requests.
///
/// The complexity of the multi_wait and multi_ring callbacks is present to avoid calling into the
/// kernel often for high-contention queues.
pub fn multi_receive<T: Copy, W: Fn(&[(Option<&AtomicU64>, u64)]), R: Fn(&[Option<&AtomicU64>])>(
    queues: &[&RawQueue<T>],
    output: &mut [Option<QueueEntry<T>>],
    multi_wait: W,
    multi_ring: R,
    flags: ReceiveFlags,
) -> Result<usize, QueueError> {
    if output.len() != queues.len() {
        return Err(QueueError::Unknown);
    }
    /* TODO (opt): avoid this allocation until we have to sleep */
    let mut waiters = Vec::new();
    waiters.resize(queues.len(), Default::default());
    let mut ringers = Vec::new();
    ringers.resize(queues.len(), None);
    let mut attempts = 100;
    loop {
        let mut count = 0;
        for (i, q) in queues.iter().enumerate() {
            let res = q.setup_sleep(
                attempts == 0,
                &mut output[i],
                &mut waiters[i],
                &mut ringers[i],
            );
            if res == Ok(()) {
                count += 1;
            }
        }
        if count > 0 {
            multi_ring(&ringers);
            return Ok(count);
        }
        if flags.contains(ReceiveFlags::NON_BLOCK) {
            return Err(QueueError::WouldBlock);
        }
        if attempts > 0 {
            attempts -= 1;
        } else {
            multi_wait(&waiters);
        }
    }
}

#[cfg(test)]
mod tests {
    #![allow(soft_unstable)]
    use std::sync::atomic::{AtomicU64, Ordering};

    //   use syscalls::SyscallArgs;
    use crate::multi_receive;
    use crate::{QueueEntry, QueueError, RawQueue, RawQueueHdr, ReceiveFlags, SubmissionFlags};

    fn wait(x: &AtomicU64, v: u64) {
        // println!("wait");
        while x.load(Ordering::SeqCst) == v {
            core::hint::spin_loop();
        }
    }

    fn wake(_x: &AtomicU64) {
        //   println!("wake");
    }

    #[test]
    fn it_transmits() {
        let qh = RawQueueHdr::new(4, std::mem::size_of::<QueueEntry<u32>>());
        let mut buffer = [QueueEntry::<i32>::default(); 1 << 4];
        let q = unsafe { RawQueue::new(&qh, buffer.as_mut_ptr()) };

        for i in 0..100 {
            let res = q.submit(
                QueueEntry::new(i as u32, i * 10),
                wait,
                wake,
                SubmissionFlags::empty(),
            );
            assert_eq!(res, Ok(()));
            let res = q.receive(wait, wake, ReceiveFlags::empty());
            assert!(res.is_ok());
            assert_eq!(res.unwrap().info(), i as u32);
            assert_eq!(res.unwrap().item(), i * 10);
        }
    }

    #[test]
    fn it_fills() {
        let qh = RawQueueHdr::new(2, std::mem::size_of::<QueueEntry<u32>>());
        let mut buffer = [QueueEntry::<i32>::default(); 1 << 2];
        let q = unsafe { RawQueue::new(&qh, buffer.as_mut_ptr()) };

        let res = q.submit(QueueEntry::new(1, 7), wait, wake, SubmissionFlags::empty());
        assert_eq!(res, Ok(()));
        let res = q.submit(QueueEntry::new(2, 7), wait, wake, SubmissionFlags::empty());
        assert_eq!(res, Ok(()));
        let res = q.submit(QueueEntry::new(3, 7), wait, wake, SubmissionFlags::empty());
        assert_eq!(res, Ok(()));
        let res = q.submit(QueueEntry::new(4, 7), wait, wake, SubmissionFlags::empty());
        assert_eq!(res, Ok(()));
        let res = q.submit(
            QueueEntry::new(1, 7),
            wait,
            wake,
            SubmissionFlags::NON_BLOCK,
        );
        assert_eq!(res, Err(QueueError::WouldBlock));
    }

    #[test]
    fn it_nonblock_receives() {
        let qh = RawQueueHdr::new(4, std::mem::size_of::<QueueEntry<u32>>());
        let mut buffer = [QueueEntry::<i32>::default(); 1 << 4];
        let q = unsafe { RawQueue::new(&qh, buffer.as_mut_ptr()) };

        let res = q.submit(QueueEntry::new(1, 7), wait, wake, SubmissionFlags::empty());
        assert_eq!(res, Ok(()));
        let res = q.receive(wait, wake, ReceiveFlags::empty());
        assert!(res.is_ok());
        assert_eq!(res.unwrap().info(), 1);
        assert_eq!(res.unwrap().item(), 7);
        let res = q.receive(wait, wake, ReceiveFlags::NON_BLOCK);
        assert_eq!(res.unwrap_err(), QueueError::WouldBlock);
    }

    #[test]
    fn it_multi_receives() {
        let qh1 = RawQueueHdr::new(4, std::mem::size_of::<QueueEntry<u32>>());
        let mut buffer1 = [QueueEntry::<i32>::default(); 1 << 4];
        let q1 = unsafe { RawQueue::new(&qh1, buffer1.as_mut_ptr()) };

        let qh2 = RawQueueHdr::new(4, std::mem::size_of::<QueueEntry<u32>>());
        let mut buffer2 = [QueueEntry::<i32>::default(); 1 << 4];
        let q2 = unsafe { RawQueue::new(&qh2, buffer2.as_mut_ptr()) };

        let res = q1.submit(QueueEntry::new(1, 7), wait, wake, SubmissionFlags::empty());
        assert_eq!(res, Ok(()));
        let res = q2.submit(QueueEntry::new(2, 8), wait, wake, SubmissionFlags::empty());
        assert_eq!(res, Ok(()));

        let mut output = [None, None];
        let res = multi_receive(
            &[&q1, &q2],
            &mut output,
            |_| {},
            |_| {},
            ReceiveFlags::empty(),
        );
        assert_eq!(res, Ok(2));
        assert_eq!(output[0].unwrap().info(), 1);
        assert_eq!(output[0].unwrap().item(), 7);
        assert_eq!(output[1].unwrap().info(), 2);
        assert_eq!(output[1].unwrap().item(), 8);
    }

    /*
        #[cfg(not(target_os = "twizzler"))]
        extern crate crossbeam;
        #[cfg(not(target_os = "twizzler"))]
        extern crate test;
        #[cfg(not(target_os = "twizzler"))]
        #[bench]
        fn two_threads(b: &mut test::Bencher) -> impl Termination {
            let qh = RawQueueHdr::new(4, std::mem::size_of::<QueueEntry<u32>>());
            let mut buffer = [QueueEntry::<i32>::default(); 1 << 4];
            let q = unsafe {
                RawQueue::new(
                    std::mem::transmute::<&RawQueueHdr, &'static RawQueueHdr>(&qh),
                    buffer.as_mut_ptr(),
                )
            };

            //let count = AtomicU64::new(0);
            let x = crossbeam::scope(|s| {
                s.spawn(|_| loop {
                    let res = q.receive(wait, wake, ReceiveFlags::empty());
                    assert!(res.is_ok());
                    if res.unwrap().info() == 2 {
                        break;
                    }
                    //count.fetch_add(1, Ordering::SeqCst);
                });

                b.iter(|| {
                    let res = q.submit(QueueEntry::new(1, 2), wait, wake, SubmissionFlags::empty());
                    assert_eq!(res, Ok(()));
                });
                let res = q.submit(QueueEntry::new(2, 2), wait, wake, SubmissionFlags::empty());
                assert_eq!(res, Ok(()));
            });

            x.unwrap();
        }
    */
}