twizzler_queue_raw/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
//! A raw queue interface for Twizzler, making no assumptions about where the underlying headers and
//! circular buffers are located. This means you probably don't want to use this --- instead, I
//! suggest you use the wrapped version of this library, twizzler-queue, since that actually
//! interacts with the object system.
//!
//! This library exists to provide an underlying implementation of the concurrent data structure for
//! each individual raw queue so that this complex code can be reused in both userspace and the
//! kernel.
//!
//! The basic design of a raw queue is two parts:
//!
//! 1. A header, which contains things like head pointers, tail pointers, etc.
//! 2. A buffer, which contains the items that are enqueued.
//!
//! The queue is an MPSC lock-free blocking data structure. Any thread may submit to a queue, but
//! only one thread may receive on that queue at a time. The queue is implemented with a head
//! pointer, a tail pointer, a doorbell, and a waiters counter. Additionally, the queue is
//! maintained in terms of "turns", that indicate which "go around" of the queue we are on (mod 2).
//!
//! # Let's look at an insert
//! Here's what the queue looks like to start with. The 0_ indicates that it's empty, and turn is
//! set to 0.
//! ```text
//! b
//! t
//! h
//! [0_, 0_, 0_]
//! ```
//! When inserting, the thread first reserves space:
//! ```text
//! b
//! t
//! h
//! [0_, 0_, 0_]
//! ```
//! Then it fills out the data:
//! ```text
//! b
//! t
//! h
//! [0X, 0_, 0_]
//! ```
//! Then it toggles the turn bit:
//! ```text
//! b
//! t
//! h
//! [1X, 0_, 0_]
//! ```
//! Next, it bumps the doorbell (and maybe wakes up a waiting consumer):
//! ```text
//! b
//! t
//! h
//! [1X, 0_, 0_]
//! ```
//!
//! Now, let's say the consumer comes along and dequeues. First, it checks if it's empty by
//! comparing tail and bell, and finds it's not empty. Then it checks if it's the correct turn. This
//! turn is 1, so yes. Next, it remove the data from the queue:
//! ```text
//! b
//! t
//! h
//! [1_, 0_, 0_]
//! ```
//! And then finally it increments the tail counter:
//! ```text
//! b
//! t
//! h
//! [1_, 0_, 0_]
//! ```
#![cfg_attr(test, feature(test))]
#![cfg_attr(not(any(feature = "std", test)), no_std)]
use core::{
cell::UnsafeCell,
marker::PhantomData,
sync::atomic::{AtomicU32, AtomicU64, Ordering},
};
use twizzler_abi::marker::BaseType;
#[derive(Clone, Copy, Default, Debug)]
#[repr(C)]
/// A queue entry. All queues must be formed of these, as the queue algorithm uses data inside this
/// struct as part of its operation. The cmd_slot is used internally to track turn, and the info is
/// used by the full queue structure to manage completion. The data T is user data passed around the
/// queue.
pub struct QueueEntry<T> {
cmd_slot: u32,
info: u32,
data: T,
}
impl<T> QueueEntry<T> {
#[inline]
fn get_cmd_slot(&self) -> u32 {
unsafe { core::mem::transmute::<&u32, &AtomicU32>(&self.cmd_slot).load(Ordering::SeqCst) }
}
#[inline]
fn set_cmd_slot(&self, v: u32) {
unsafe {
core::mem::transmute::<&u32, &AtomicU32>(&self.cmd_slot).store(v, Ordering::SeqCst);
}
}
#[inline]
/// Get the data item of a QueueEntry.
pub fn item(self) -> T {
self.data
}
#[inline]
/// Get the info tag of a QueueEntry.
pub fn info(&self) -> u32 {
self.info
}
/// Construct a new QueueEntry. The `info` tag should be used to inform completion events in the
/// full queue.
pub fn new(info: u32, item: T) -> Self {
Self {
cmd_slot: 0,
info,
data: item,
}
}
}
/// The base info structure stored in a Twizzler queue object. Used to open Twizzler queue objects
/// and create a [Queue].
#[repr(C)]
pub struct QueueBase<S, C> {
pub sub_hdr: usize,
pub com_hdr: usize,
pub sub_buf: usize,
pub com_buf: usize,
_pd: PhantomData<(S, C)>,
}
impl<S, C> BaseType for QueueBase<S, C> {
fn init<T>(_t: T) -> Self {
todo!()
}
fn tags() -> &'static [(
twizzler_abi::marker::BaseVersion,
twizzler_abi::marker::BaseTag,
)] {
todo!()
}
}
#[repr(C)]
/// A raw queue header. This contains all the necessary counters and info to run the queue
/// algorithm.
pub struct RawQueueHdr {
l2len: usize,
stride: usize,
head: AtomicU32,
waiters: AtomicU32,
bell: AtomicU64,
tail: AtomicU64,
}
impl RawQueueHdr {
/// Construct a new raw queue header.
pub fn new(l2len: usize, stride: usize) -> Self {
Self {
l2len,
stride,
head: AtomicU32::new(0),
waiters: AtomicU32::new(0),
bell: AtomicU64::new(0),
tail: AtomicU64::new(0),
}
}
#[inline]
fn len(&self) -> usize {
1 << self.l2len
}
#[inline]
fn is_full(&self, h: u32, t: u64) -> bool {
(h & 0x7fffffff) as u64 - (t & 0x7fffffff) >= self.len() as u64
}
#[inline]
fn is_empty(&self, bell: u64, tail: u64) -> bool {
(bell & 0x7fffffff) == (tail & 0x7fffffff)
}
#[inline]
fn is_turn<T>(&self, t: u64, item: *const QueueEntry<T>) -> bool {
let turn = (t / (self.len() as u64)) % 2;
let val = unsafe { &*item }.get_cmd_slot() >> 31;
(val == 0) == (turn == 1)
}
#[inline]
fn consumer_waiting(&self) -> bool {
(self.tail.load(Ordering::SeqCst) & (1 << 31)) != 0
}
#[inline]
fn submitter_waiting(&self) -> bool {
self.waiters.load(Ordering::SeqCst) > 0
}
#[inline]
fn consumer_set_waiting(&self, waiting: bool) {
if waiting {
self.tail.fetch_or(1 << 31, Ordering::SeqCst);
} else {
self.tail.fetch_and(!(1 << 31), Ordering::SeqCst);
}
}
#[inline]
fn inc_submit_waiting(&self) {
self.waiters.fetch_add(1, Ordering::SeqCst);
}
#[inline]
fn dec_submit_waiting(&self) {
self.waiters.fetch_sub(1, Ordering::SeqCst);
}
#[inline]
fn reserve_slot<W: Fn(&AtomicU64, u64)>(
&self,
flags: SubmissionFlags,
wait: W,
) -> Result<u32, QueueError> {
let h = self.head.fetch_add(1, Ordering::SeqCst);
let mut waiter = false;
let mut attempts = 1000;
loop {
let t = self.tail.load(Ordering::SeqCst);
if !self.is_full(h, t) {
break;
}
if flags.contains(SubmissionFlags::NON_BLOCK) {
return Err(QueueError::WouldBlock);
}
if attempts != 0 {
attempts -= 1;
core::hint::spin_loop();
continue;
}
if !waiter {
waiter = true;
self.inc_submit_waiting();
}
let t = self.tail.load(Ordering::SeqCst);
if self.is_full(h, t) {
wait(&self.tail, t);
}
}
if waiter {
self.dec_submit_waiting();
}
Ok(h & 0x7fffffff)
}
#[inline]
fn get_turn(&self, h: u32) -> bool {
(h / self.len() as u32) % 2 == 0
}
#[inline]
fn ring<R: Fn(&AtomicU64)>(&self, ring: R) {
self.bell.fetch_add(1, Ordering::SeqCst);
if self.consumer_waiting() {
ring(&self.bell)
}
}
#[inline]
fn get_next_ready<W: Fn(&AtomicU64, u64), T>(
&self,
wait: W,
flags: ReceiveFlags,
raw_buf: *const QueueEntry<T>,
) -> Result<u64, QueueError> {
let mut attempts = 1000;
let t = self.tail.load(Ordering::SeqCst) & 0x7fffffff;
loop {
let b = self.bell.load(Ordering::SeqCst);
let item = unsafe { raw_buf.add((t as usize) & (self.len() - 1)) };
if !self.is_empty(b, t) && self.is_turn(t, item) {
break;
}
if flags.contains(ReceiveFlags::NON_BLOCK) {
return Err(QueueError::WouldBlock);
}
if attempts != 0 {
attempts -= 1;
core::hint::spin_loop();
continue;
}
self.consumer_set_waiting(true);
let b = self.bell.load(Ordering::SeqCst);
if self.is_empty(b, t) || !self.is_turn(t, item) {
wait(&self.bell, b);
}
}
if attempts == 0 {
self.consumer_set_waiting(false);
}
Ok(t)
}
fn setup_rec_sleep_simple(&self) -> (&AtomicU64, u64) {
// TODO: an interface that undoes this.
self.consumer_set_waiting(true);
let b = self.bell.load(Ordering::SeqCst);
(&self.bell, b)
}
fn setup_send_sleep_simple(&self) -> (&AtomicU64, u64) {
// TODO: an interface that undoes this.
self.submitter_waiting();
let t = self.tail.load(Ordering::SeqCst);
(&self.tail, t)
}
fn setup_rec_sleep<'a, T>(
&'a self,
sleep: bool,
raw_buf: *const QueueEntry<T>,
waiter: &mut (Option<&'a AtomicU64>, u64),
) -> Result<u64, QueueError> {
let t = self.tail.load(Ordering::SeqCst) & 0x7fffffff;
let b = self.bell.load(Ordering::SeqCst);
let item = unsafe { raw_buf.add((t as usize) & (self.len() - 1)) };
*waiter = (Some(&self.bell), b);
if self.is_empty(b, t) || !self.is_turn(t, item) {
if sleep {
self.consumer_set_waiting(true);
let b = self.bell.load(Ordering::SeqCst);
*waiter = (Some(&self.bell), b);
if !self.is_empty(b, t) && self.is_turn(t, item) {
return Ok(t);
}
}
Err(QueueError::WouldBlock)
} else {
Ok(t)
}
}
#[inline]
fn advance_tail<R: Fn(&AtomicU64)>(&self, ring: R) {
let t = self.tail.load(Ordering::SeqCst);
self.tail.store((t + 1) & 0x7fffffff, Ordering::SeqCst);
if self.submitter_waiting() {
ring(&self.tail);
}
}
#[inline]
fn advance_tail_setup<'a>(&'a self, ringer: &mut Option<&'a AtomicU64>) {
let t = self.tail.load(Ordering::SeqCst);
self.tail.store((t + 1) & 0x7fffffff, Ordering::SeqCst);
if self.submitter_waiting() {
*ringer = Some(&self.tail);
}
}
}
/// A raw queue, comprising of a header to track the algorithm and a buffer to hold queue entries.
pub struct RawQueue<T> {
hdr: *const RawQueueHdr,
buf: UnsafeCell<*mut QueueEntry<T>>,
}
bitflags::bitflags! {
/// Flags to control how queue submission works.
pub struct SubmissionFlags: u32 {
/// If the request would block, return Err([SubmissionError::WouldBlock]) instead.
const NON_BLOCK = 1;
}
/// Flags to control how queue receive works.
pub struct ReceiveFlags: u32 {
/// If the request would block, return Err([ReceiveError::WouldBlock]) instead.
const NON_BLOCK = 1;
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
/// Possible errors for submitting to a queue.
pub enum QueueError {
/// An unknown error.
Unknown,
/// The operation would have blocked, and non-blocking operation was specified.
WouldBlock,
}
impl<T: Copy> RawQueue<T> {
/// Construct a new raw queue out of a header reference and a buffer pointer.
/// # Safety
/// The caller must ensure that hdr and buf point to valid objects, and that the lifetime of the
/// RawQueue is exceeded by the objects pointed to.
pub unsafe fn new(hdr: *const RawQueueHdr, buf: *mut QueueEntry<T>) -> Self {
Self {
hdr,
buf: UnsafeCell::new(buf),
}
}
#[inline]
fn hdr(&self) -> &RawQueueHdr {
unsafe { &*self.hdr }
}
// This is a bit unsafe, but it's because we're managing concurrency ourselves.
#[allow(clippy::mut_from_ref)]
#[inline]
fn get_buf(&self, off: usize) -> &mut QueueEntry<T> {
unsafe {
(*self.buf.get())
.add(off & (self.hdr().len() - 1))
.as_mut()
.unwrap()
}
}
/// Submit a data item of type T, wrapped in a QueueEntry, to the queue. The two callbacks,
/// wait, and ring, are for implementing a rudimentary condvar, wherein if the queue needs to
/// block, we'll call wait(x, y), where we are supposed to wait until *x != y. Once we are done
/// inserting, if we need to wake up a consumer, we will call ring, which should wake up anyone
/// waiting on that word of memory.
pub fn submit<W: Fn(&AtomicU64, u64), R: Fn(&AtomicU64)>(
&self,
item: QueueEntry<T>,
wait: W,
ring: R,
flags: SubmissionFlags,
) -> Result<(), QueueError> {
let h = self.hdr().reserve_slot(flags, wait)?;
let buf_item = self.get_buf(h as usize);
*buf_item = item;
let turn = self.hdr().get_turn(h);
buf_item.set_cmd_slot(h | if turn { 1u32 << 31 } else { 0 });
self.hdr().ring(ring);
Ok(())
}
/// Receive data from the queue, returning either that data or an error. The wait and ring
/// callbacks work similar to [RawQueue::submit].
pub fn receive<W: Fn(&AtomicU64, u64), R: Fn(&AtomicU64)>(
&self,
wait: W,
ring: R,
flags: ReceiveFlags,
) -> Result<QueueEntry<T>, QueueError> {
let t = self
.hdr()
.get_next_ready(wait, flags, unsafe { *self.buf.get() })?;
let buf_item = self.get_buf(t as usize);
let item = *buf_item;
self.hdr().advance_tail(ring);
Ok(item)
}
pub fn setup_sleep<'a>(
&'a self,
sleep: bool,
output: &mut Option<QueueEntry<T>>,
waiter: &mut (Option<&'a AtomicU64>, u64),
ringer: &mut Option<&'a AtomicU64>,
) -> Result<(), QueueError> {
let t = self
.hdr()
.setup_rec_sleep(sleep, unsafe { *self.buf.get() }, waiter)?;
let buf_item = self.get_buf(t as usize);
let item = *buf_item;
*output = Some(item);
self.hdr().advance_tail_setup(ringer);
Ok(())
}
#[inline]
pub fn setup_sleep_simple(&self) -> (&AtomicU64, u64) {
self.hdr().setup_rec_sleep_simple()
}
#[inline]
pub fn setup_send_sleep_simple(&self) -> (&AtomicU64, u64) {
self.hdr().setup_send_sleep_simple()
}
}
unsafe impl<T: Send> Send for RawQueue<T> {}
unsafe impl<T: Send> Sync for RawQueue<T> {}
#[cfg(any(feature = "std", test))]
/// Wait for receiving on multiple raw queues. If any of the passed raw queues can return data, they
/// will do so by writing it into the output array at the same index that they are in the `queues`
/// variable. The queues and output arrays must be the same length. If no data is available in any
/// queues, then the function will call back on multi_wait, which it expects to wait until **any**
/// of the pairs (&x, y) meet the condition that *x != y. Before returning any data, the function
/// will callback on multi_ring, to inform multiple queues that data was taken from them. It expects
/// the multi_ring function to wake up any waiting threads on the supplied words of memory.
///
/// Note that both call backs specify the pointers as Option. In the case that an entry is None,
/// there was no requested wait or wake operation for that queue, and that entry should be ignored.
///
/// If flags specifies [ReceiveFlags::NON_BLOCK], then if no data is available, the function returns
/// immediately with Err([QueueError::WouldBlock]).
///
/// # Rationale
/// This function is here to implement poll or select like functionality, wherein a given thread or
/// program wants to wait on multiple incoming request channels and handle them itself, thus cutting
/// down on the number of threads required. The maximum number of queues to use here is a trade-off
/// --- more means fewer threads, but since this function is linear in the number of queues, each
/// thread could take longer to service requests.
///
/// The complexity of the multi_wait and multi_ring callbacks is present to avoid calling into the
/// kernel often for high-contention queues.
pub fn multi_receive<T: Copy, W: Fn(&[(Option<&AtomicU64>, u64)]), R: Fn(&[Option<&AtomicU64>])>(
queues: &[&RawQueue<T>],
output: &mut [Option<QueueEntry<T>>],
multi_wait: W,
multi_ring: R,
flags: ReceiveFlags,
) -> Result<usize, QueueError> {
if output.len() != queues.len() {
return Err(QueueError::Unknown);
}
/* TODO (opt): avoid this allocation until we have to sleep */
let mut waiters = Vec::new();
waiters.resize(queues.len(), Default::default());
let mut ringers = Vec::new();
ringers.resize(queues.len(), None);
let mut attempts = 100;
loop {
let mut count = 0;
for (i, q) in queues.iter().enumerate() {
let res = q.setup_sleep(
attempts == 0,
&mut output[i],
&mut waiters[i],
&mut ringers[i],
);
if res == Ok(()) {
count += 1;
}
}
if count > 0 {
multi_ring(&ringers);
return Ok(count);
}
if flags.contains(ReceiveFlags::NON_BLOCK) {
return Err(QueueError::WouldBlock);
}
if attempts > 0 {
attempts -= 1;
} else {
multi_wait(&waiters);
}
}
}
#[cfg(test)]
mod tests {
#![allow(soft_unstable)]
use std::sync::atomic::{AtomicU64, Ordering};
// use syscalls::SyscallArgs;
use crate::multi_receive;
use crate::{QueueEntry, QueueError, RawQueue, RawQueueHdr, ReceiveFlags, SubmissionFlags};
fn wait(x: &AtomicU64, v: u64) {
// println!("wait");
while x.load(Ordering::SeqCst) == v {
core::hint::spin_loop();
}
}
fn wake(_x: &AtomicU64) {
// println!("wake");
}
#[test]
fn it_transmits() {
let qh = RawQueueHdr::new(4, std::mem::size_of::<QueueEntry<u32>>());
let mut buffer = [QueueEntry::<i32>::default(); 1 << 4];
let q = unsafe { RawQueue::new(&qh, buffer.as_mut_ptr()) };
for i in 0..100 {
let res = q.submit(
QueueEntry::new(i as u32, i * 10),
wait,
wake,
SubmissionFlags::empty(),
);
assert_eq!(res, Ok(()));
let res = q.receive(wait, wake, ReceiveFlags::empty());
assert!(res.is_ok());
assert_eq!(res.unwrap().info(), i as u32);
assert_eq!(res.unwrap().item(), i * 10);
}
}
#[test]
fn it_fills() {
let qh = RawQueueHdr::new(2, std::mem::size_of::<QueueEntry<u32>>());
let mut buffer = [QueueEntry::<i32>::default(); 1 << 2];
let q = unsafe { RawQueue::new(&qh, buffer.as_mut_ptr()) };
let res = q.submit(QueueEntry::new(1, 7), wait, wake, SubmissionFlags::empty());
assert_eq!(res, Ok(()));
let res = q.submit(QueueEntry::new(2, 7), wait, wake, SubmissionFlags::empty());
assert_eq!(res, Ok(()));
let res = q.submit(QueueEntry::new(3, 7), wait, wake, SubmissionFlags::empty());
assert_eq!(res, Ok(()));
let res = q.submit(QueueEntry::new(4, 7), wait, wake, SubmissionFlags::empty());
assert_eq!(res, Ok(()));
let res = q.submit(
QueueEntry::new(1, 7),
wait,
wake,
SubmissionFlags::NON_BLOCK,
);
assert_eq!(res, Err(QueueError::WouldBlock));
}
#[test]
fn it_nonblock_receives() {
let qh = RawQueueHdr::new(4, std::mem::size_of::<QueueEntry<u32>>());
let mut buffer = [QueueEntry::<i32>::default(); 1 << 4];
let q = unsafe { RawQueue::new(&qh, buffer.as_mut_ptr()) };
let res = q.submit(QueueEntry::new(1, 7), wait, wake, SubmissionFlags::empty());
assert_eq!(res, Ok(()));
let res = q.receive(wait, wake, ReceiveFlags::empty());
assert!(res.is_ok());
assert_eq!(res.unwrap().info(), 1);
assert_eq!(res.unwrap().item(), 7);
let res = q.receive(wait, wake, ReceiveFlags::NON_BLOCK);
assert_eq!(res.unwrap_err(), QueueError::WouldBlock);
}
#[test]
fn it_multi_receives() {
let qh1 = RawQueueHdr::new(4, std::mem::size_of::<QueueEntry<u32>>());
let mut buffer1 = [QueueEntry::<i32>::default(); 1 << 4];
let q1 = unsafe { RawQueue::new(&qh1, buffer1.as_mut_ptr()) };
let qh2 = RawQueueHdr::new(4, std::mem::size_of::<QueueEntry<u32>>());
let mut buffer2 = [QueueEntry::<i32>::default(); 1 << 4];
let q2 = unsafe { RawQueue::new(&qh2, buffer2.as_mut_ptr()) };
let res = q1.submit(QueueEntry::new(1, 7), wait, wake, SubmissionFlags::empty());
assert_eq!(res, Ok(()));
let res = q2.submit(QueueEntry::new(2, 8), wait, wake, SubmissionFlags::empty());
assert_eq!(res, Ok(()));
let mut output = [None, None];
let res = multi_receive(
&[&q1, &q2],
&mut output,
|_| {},
|_| {},
ReceiveFlags::empty(),
);
assert_eq!(res, Ok(2));
assert_eq!(output[0].unwrap().info(), 1);
assert_eq!(output[0].unwrap().item(), 7);
assert_eq!(output[1].unwrap().info(), 2);
assert_eq!(output[1].unwrap().item(), 8);
}
/*
#[cfg(not(target_os = "twizzler"))]
extern crate crossbeam;
#[cfg(not(target_os = "twizzler"))]
extern crate test;
#[cfg(not(target_os = "twizzler"))]
#[bench]
fn two_threads(b: &mut test::Bencher) -> impl Termination {
let qh = RawQueueHdr::new(4, std::mem::size_of::<QueueEntry<u32>>());
let mut buffer = [QueueEntry::<i32>::default(); 1 << 4];
let q = unsafe {
RawQueue::new(
std::mem::transmute::<&RawQueueHdr, &'static RawQueueHdr>(&qh),
buffer.as_mut_ptr(),
)
};
//let count = AtomicU64::new(0);
let x = crossbeam::scope(|s| {
s.spawn(|_| loop {
let res = q.receive(wait, wake, ReceiveFlags::empty());
assert!(res.is_ok());
if res.unwrap().info() == 2 {
break;
}
//count.fetch_add(1, Ordering::SeqCst);
});
b.iter(|| {
let res = q.submit(QueueEntry::new(1, 2), wait, wake, SubmissionFlags::empty());
assert_eq!(res, Ok(()));
});
let res = q.submit(QueueEntry::new(2, 2), wait, wake, SubmissionFlags::empty());
assert_eq!(res, Ok(()));
});
x.unwrap();
}
*/
}