1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#![feature(fn_traits)]
#![feature(unboxed_closures)]
#![feature(tuple_trait)]
#![feature(naked_functions)]
#![feature(auto_traits)]
#![feature(negative_impls)]

use core::ffi::CStr;
use std::{cell::UnsafeCell, marker::Tuple, mem::MaybeUninit};

pub use secgate_macros::*;
use twizzler_abi::object::ObjID;

/// Enum of possible return codes, similar to [Result], but with specific
/// variants of possible failures of initializing or invoking the secure gate call.
#[derive(Debug, Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Hash)]
#[repr(C, u32)]
pub enum SecGateReturn<T> {
    /// Call succeeded, and returned T.
    Success(T),
    /// Permission was denied for this call.
    PermissionDenied,
    /// The callee panic'd inside the other compartment.
    CalleePanic,
    /// The call went through, but no return value was given.
    NoReturnValue,
}

impl<T> SecGateReturn<T> {
    #[track_caller]
    pub fn unwrap(self) -> T {
        match self {
            SecGateReturn::Success(data) => data,
            _ => panic!("failed to unwrap non-successful secure gate return"),
        }
    }
}

/// A struct of information about a secure gate. These are auto-generated by the
/// [crate::secure_gate] macro, and stored in a special ELF section (.twz_secgate_info) as an array.
/// The dynamic linker and monitor can then use this to easily enumerate gates.
#[repr(C)]
pub struct SecGateInfo<F> {
    /// A pointer to the implementation entry function. This must be a pointer, and we statically
    /// check that is has the same size as usize (sorry cheri, we'll fix this another time)
    pub imp: F,
    /// The name of this secure gate. This must be a pointer to a null-terminated C string.
    name: *const i8,
}

impl<F> SecGateInfo<F> {
    pub const fn new(imp: F, name: &'static CStr) -> Self {
        Self {
            imp,
            name: name.as_ptr(),
        }
    }

    pub fn name(&self) -> &CStr {
        // Safety: we only ever construct self from a static CStr.
        unsafe { CStr::from_ptr(self.name) }
    }
}

// Safety: If F is Send, we are too because the name field points to a static C string that cannot
// be written to.
unsafe impl<F: Send> Send for SecGateInfo<F> {}
// Safety: If F is Sync, we are too because the name field points to a static C string that cannot
// be written to.
unsafe impl<F: Sync> Sync for SecGateInfo<F> {}

/// Minimum alignment of secure trampolines.
pub const SECGATE_TRAMPOLINE_ALIGN: usize = 0x10;

/// Non-generic and non-pointer-based SecGateInfo, for use during dynamic linking.
pub type RawSecGateInfo = SecGateInfo<usize>;
// Ensure that these are the same size because the dynamic linker uses the raw variant.
static_assertions::assert_eq_size!(RawSecGateInfo, SecGateInfo<&fn()>);

/// Arguments that will be passed to the secure call. Concrete versions of this are generated by the
/// macro.
#[derive(Clone, Copy)]
#[repr(C)]
pub struct Arguments<Args: Tuple + Crossing + Copy> {
    args: Args,
}

impl<Args: Tuple + Crossing + Copy> Arguments<Args> {
    pub fn with_alloca<F, R>(args: Args, f: F) -> R
    where
        F: FnOnce(&mut Self) -> R,
    {
        alloca::alloca(|stack_space| {
            stack_space.write(Self { args });
            // Safety: we init the MaybeUninit just above.
            f(unsafe { stack_space.assume_init_mut() })
        })
    }

    pub fn into_inner(self) -> Args {
        self.args
    }
}

/// Return value to be filled by the secure call. Concrete versions of this are generated by the
/// macro.
#[derive(Copy)]
#[repr(C)]
pub struct Return<T: Crossing + Copy> {
    isset: bool,
    ret: MaybeUninit<T>,
}

impl<T: Copy + Crossing> Clone for Return<T> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<T: Crossing + Copy> Return<T> {
    pub fn with_alloca<F, R>(f: F) -> R
    where
        F: FnOnce(&mut Self) -> R,
    {
        alloca::alloca(|stack_space| {
            stack_space.write(Self {
                isset: false,
                ret: MaybeUninit::uninit(),
            });
            // Safety: we init the MaybeUninit just above.
            f(unsafe { stack_space.assume_init_mut() })
        })
    }

    /// If a previous call to set is made, or this was constructed by new(), then into_inner
    /// returns the inner value. Otherwise, returns None.
    pub fn into_inner(self) -> Option<T> {
        if self.isset {
            Some(unsafe { self.ret.assume_init() })
        } else {
            None
        }
    }

    /// Construct a new, uninitialized Self.
    pub fn new_uninit() -> Self {
        Self {
            isset: false,
            ret: MaybeUninit::uninit(),
        }
    }

    /// Set the inner value. Future call to into_inner will return Some(val).
    pub fn set(&mut self, val: T) {
        self.ret.write(val);
        self.isset = true;
    }
}

/// An auto trait that limits the types that can be send across to another compartment. These are:
/// 1. Types other than references, UnsafeCell, raw pointers, slices.
/// 2. #[repr(C)] structs and enums made from Crossing types.
///
/// # Safety
/// The type must meet the above requirements.
pub unsafe auto trait Crossing {}

impl<T> !Crossing for &T {}
impl<T> !Crossing for &mut T {}
impl<T> !Crossing for UnsafeCell<T> {}
impl<T> !Crossing for *const T {}
impl<T> !Crossing for *mut T {}
impl<T> !Crossing for &[T] {}
impl<T> !Crossing for &mut [T] {}

unsafe impl<T: Crossing + Copy> Crossing for SecGateReturn<T> {}

/// Required to put in your source if you call any secure gates.
// TODO: this isn't ideal, but it's the only solution I have at the moment. For some reason,
// the linker doesn't even bother linking the libcalloca.a library that alloca creates. This forces
// that to happen.
#[macro_export]
macro_rules! secgate_prelude {
    () => {
        #[link(name = "calloca", kind = "static")]
        extern "C" {
            pub fn c_with_alloca();
        }
    };
}

#[derive(Debug, Clone, Copy, PartialEq, PartialOrd, Ord, Eq, Hash)]
#[repr(C)]
pub struct GateCallInfo {
    thread_id: ObjID,
    src_ctx: ObjID,
}

impl GateCallInfo {
    /// Allocate a new GateCallInfo on the stack for the closure.
    pub fn with_alloca<F, R>(thread_id: ObjID, src_ctx: ObjID, f: F) -> R
    where
        F: FnOnce(&mut Self) -> R,
    {
        alloca::alloca(|stack_space| {
            stack_space.write(Self { thread_id, src_ctx });
            // Safety: we init the MaybeUninit just above.
            f(unsafe { stack_space.assume_init_mut() })
        })
    }

    /// Get the ID of the source context, or None if the call was not cross-context.
    pub fn source_context(&self) -> Option<ObjID> {
        if self.src_ctx.as_u128() == 0 {
            None
        } else {
            Some(self.src_ctx)
        }
    }

    /// Get the ID of the calling thread.
    pub fn thread_id(&self) -> ObjID {
        if self.thread_id.as_u128() == 0 {
            twizzler_abi::syscall::sys_thread_self_id()
        } else {
            self.thread_id
        }
    }

    /// Ensures that the data is filled out (may read thread ID from kernel if necessary).
    pub fn canonicalize(self) -> Self {
        Self {
            thread_id: self.thread_id(),
            src_ctx: self.src_ctx,
        }
    }
}