rusqlite/
params.rs

1use crate::{Result, Statement, ToSql};
2
3mod sealed {
4    /// This trait exists just to ensure that the only impls of `trait Params`
5    /// that are allowed are ones in this crate.
6    pub trait Sealed {}
7}
8use sealed::Sealed;
9
10/// Trait used for [sets of parameter][params] passed into SQL
11/// statements/queries.
12///
13/// [params]: https://www.sqlite.org/c3ref/bind_blob.html
14///
15/// Note: Currently, this trait can only be implemented inside this crate.
16/// Additionally, it's methods (which are `doc(hidden)`) should currently not be
17/// considered part of the stable API, although it's possible they will
18/// stabilize in the future.
19///
20/// # Passing parameters to SQLite
21///
22/// Many functions in this library let you pass parameters to SQLite. Doing this
23/// lets you avoid any risk of SQL injection, and is simpler than escaping
24/// things manually. Aside from deprecated functions and a few helpers, this is
25/// indicated by the function taking a generic argument that implements `Params`
26/// (this trait).
27///
28/// ## Positional parameters
29///
30/// For cases where you want to pass a list of parameters where the number of
31/// parameters is known at compile time, this can be done in one of the
32/// following ways:
33///
34/// - For small lists of parameters up to 16 items, they may alternatively be
35///   passed as a tuple, as in `thing.query((1, "foo"))`.
36///
37///     This is somewhat inconvenient for a single item, since you need a
38///     weird-looking trailing comma: `thing.query(("example",))`. That case is
39///     perhaps more cleanly expressed as `thing.query(["example"])`.
40///
41/// - Using the [`rusqlite::params!`](crate::params!) macro, e.g.
42///   `thing.query(rusqlite::params![1, "foo", bar])`. This is mostly useful for
43///   heterogeneous lists where the number of parameters greater than 16, or
44///   homogeneous lists of parameters where the number of parameters exceeds 32.
45///
46/// - For small homogeneous lists of parameters, they can either be passed as:
47///
48///     - an array, as in `thing.query([1i32, 2, 3, 4])` or `thing.query(["foo",
49///       "bar", "baz"])`.
50///
51///     - a reference to an array of references, as in `thing.query(&["foo",
52///       "bar", "baz"])` or `thing.query(&[&1i32, &2, &3])`.
53///
54///         (Note: in this case we don't implement this for slices for coherence
55///         reasons, so it really is only for the "reference to array" types —
56///         hence why the number of parameters must be <= 32, or you need to
57///         reach for `rusqlite::params!`)
58///
59///     Unfortunately, in the current design it's not possible to allow this for
60///     references to arrays of non-references (e.g. `&[1i32, 2, 3]`). Code like
61///     this should instead either use `params!`, an array literal, a `&[&dyn
62///     ToSql]` or if none of those work, [`ParamsFromIter`].
63///
64/// - As a slice of `ToSql` trait object references, e.g. `&[&dyn ToSql]`. This
65///   is mostly useful for passing parameter lists around as arguments without
66///   having every function take a generic `P: Params`.
67///
68/// ### Example (positional)
69///
70/// ```rust,no_run
71/// # use rusqlite::{Connection, Result, params};
72/// fn update_rows(conn: &Connection) -> Result<()> {
73///     let mut stmt = conn.prepare("INSERT INTO test (a, b) VALUES (?1, ?2)")?;
74///
75///     // Using a tuple:
76///     stmt.execute((0, "foobar"))?;
77///
78///     // Using `rusqlite::params!`:
79///     stmt.execute(params![1i32, "blah"])?;
80///
81///     // array literal — non-references
82///     stmt.execute([2i32, 3i32])?;
83///
84///     // array literal — references
85///     stmt.execute(["foo", "bar"])?;
86///
87///     // Slice literal, references:
88///     stmt.execute(&[&2i32, &3i32])?;
89///
90///     // Note: The types behind the references don't have to be `Sized`
91///     stmt.execute(&["foo", "bar"])?;
92///
93///     // However, this doesn't work (see above):
94///     // stmt.execute(&[1i32, 2i32])?;
95///     Ok(())
96/// }
97/// ```
98///
99/// ## Named parameters
100///
101/// SQLite lets you name parameters using a number of conventions (":foo",
102/// "@foo", "$foo"). You can pass named parameters in to SQLite using rusqlite
103/// in a few ways:
104///
105/// - Using the [`rusqlite::named_params!`](crate::named_params!) macro, as in
106///   `stmt.execute(named_params!{ ":name": "foo", ":age": 99 })`. Similar to
107///   the `params` macro, this is most useful for heterogeneous lists of
108///   parameters, or lists where the number of parameters exceeds 32.
109///
110/// - As a slice of `&[(&str, &dyn ToSql)]`. This is what essentially all of
111///   these boil down to in the end, conceptually at least. In theory, you can
112///   pass this as `stmt`.
113///
114/// - As array references, similar to the positional params. This looks like
115///   `thing.query(&[(":foo", &1i32), (":bar", &2i32)])` or
116///   `thing.query(&[(":foo", "abc"), (":bar", "def")])`.
117///
118/// Note: Unbound named parameters will be left to the value they previously
119/// were bound with, falling back to `NULL` for parameters which have never been
120/// bound.
121///
122/// ### Example (named)
123///
124/// ```rust,no_run
125/// # use rusqlite::{Connection, Result, named_params};
126/// fn insert(conn: &Connection) -> Result<()> {
127///     let mut stmt = conn.prepare("INSERT INTO test (key, value) VALUES (:key, :val)")?;
128///     // Using `rusqlite::params!`:
129///     stmt.execute(named_params! { ":key": "one", ":val": 2 })?;
130///     // Alternatively:
131///     stmt.execute(&[(":key", "three"), (":val", "four")])?;
132///     // Or:
133///     stmt.execute(&[(":key", &100), (":val", &200)])?;
134///     Ok(())
135/// }
136/// ```
137///
138/// ## No parameters
139///
140/// You can just use an empty tuple or the empty array literal to run a query
141/// that accepts no parameters.
142///
143/// ### Example (no parameters)
144///
145/// The empty tuple:
146///
147/// ```rust,no_run
148/// # use rusqlite::{Connection, Result, params};
149/// fn delete_all_users(conn: &Connection) -> Result<()> {
150///     // You may also use `()`.
151///     conn.execute("DELETE FROM users", ())?;
152///     Ok(())
153/// }
154/// ```
155///
156/// The empty array:
157///
158/// ```rust,no_run
159/// # use rusqlite::{Connection, Result, params};
160/// fn delete_all_users(conn: &Connection) -> Result<()> {
161///     // Just use an empty array (e.g. `[]`) for no params.
162///     conn.execute("DELETE FROM users", [])?;
163///     Ok(())
164/// }
165/// ```
166///
167/// ## Dynamic parameter list
168///
169/// If you have a number of parameters which is unknown at compile time (for
170/// example, building a dynamic query at runtime), you have two choices:
171///
172/// - Use a `&[&dyn ToSql]`. This is often annoying to construct if you don't
173///   already have this type on-hand.
174/// - Use the [`ParamsFromIter`] type. This essentially lets you wrap an
175///   iterator some `T: ToSql` with something that implements `Params`. The
176///   usage of this looks like `rusqlite::params_from_iter(something)`.
177///
178/// A lot of the considerations here are similar either way, so you should see
179/// the [`ParamsFromIter`] documentation for more info / examples.
180pub trait Params: Sealed {
181    // XXX not public api, might not need to expose.
182    //
183    // Binds the parameters to the statement. It is unlikely calling this
184    // explicitly will do what you want. Please use `Statement::query` or
185    // similar directly.
186    //
187    // For now, just hide the function in the docs...
188    #[doc(hidden)]
189    fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()>;
190}
191
192// Explicitly impl for empty array. Critically, for `conn.execute([])` to be
193// unambiguous, this must be the *only* implementation for an empty array.
194//
195// This sadly prevents `impl<T: ToSql, const N: usize> Params for [T; N]`, which
196// forces people to use `params![...]` or `rusqlite::params_from_iter` for long
197// homogeneous lists of parameters. This is not that big of a deal, but is
198// unfortunate, especially because I mostly did it because I wanted a simple
199// syntax for no-params that didn't require importing -- the empty tuple fits
200// that nicely, but I didn't think of it until much later.
201//
202// Admittedly, if we did have the generic impl, then we *wouldn't* support the
203// empty array literal as a parameter, since the `T` there would fail to be
204// inferred. The error message here would probably be quite bad, and so on
205// further thought, probably would end up causing *more* surprises, not less.
206impl Sealed for [&(dyn ToSql + Send + Sync); 0] {}
207impl Params for [&(dyn ToSql + Send + Sync); 0] {
208    #[inline]
209    fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()> {
210        stmt.ensure_parameter_count(0)
211    }
212}
213
214impl Sealed for &[&dyn ToSql] {}
215impl Params for &[&dyn ToSql] {
216    #[inline]
217    fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()> {
218        stmt.bind_parameters(self)
219    }
220}
221
222impl Sealed for &[(&str, &dyn ToSql)] {}
223impl Params for &[(&str, &dyn ToSql)] {
224    #[inline]
225    fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()> {
226        stmt.bind_parameters_named(self)
227    }
228}
229
230// Manual impls for the empty and singleton tuple, although the rest are covered
231// by macros.
232impl Sealed for () {}
233impl Params for () {
234    #[inline]
235    fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()> {
236        stmt.ensure_parameter_count(0)
237    }
238}
239
240// I'm pretty sure you could tweak the `single_tuple_impl` to accept this.
241impl<T: ToSql> Sealed for (T,) {}
242impl<T: ToSql> Params for (T,) {
243    #[inline]
244    fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()> {
245        stmt.ensure_parameter_count(1)?;
246        stmt.raw_bind_parameter(1, self.0)?;
247        Ok(())
248    }
249}
250
251macro_rules! single_tuple_impl {
252    ($count:literal : $(($field:tt $ftype:ident)),* $(,)?) => {
253        impl<$($ftype,)*> Sealed for ($($ftype,)*) where $($ftype: ToSql,)* {}
254        impl<$($ftype,)*> Params for ($($ftype,)*) where $($ftype: ToSql,)* {
255            fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()> {
256                stmt.ensure_parameter_count($count)?;
257                $({
258                    debug_assert!($field < $count);
259                    stmt.raw_bind_parameter($field + 1, self.$field)?;
260                })+
261                Ok(())
262            }
263        }
264    }
265}
266
267// We use a macro for the rest, but don't bother with trying to implement it
268// in a single invocation (it's possible to do, but my attempts were almost the
269// same amount of code as just writing it out this way, and much more dense --
270// it is a more complicated case than the TryFrom macro we have for row->tuple).
271//
272// Note that going up to 16 (rather than the 12 that the impls in the stdlib
273// usually support) is just because we did the same in the `TryFrom<Row>` impl.
274// I didn't catch that then, but there's no reason to remove it, and it seems
275// nice to be consistent here; this way putting data in the database and getting
276// data out of the database are more symmetric in a (mostly superficial) sense.
277single_tuple_impl!(2: (0 A), (1 B));
278single_tuple_impl!(3: (0 A), (1 B), (2 C));
279single_tuple_impl!(4: (0 A), (1 B), (2 C), (3 D));
280single_tuple_impl!(5: (0 A), (1 B), (2 C), (3 D), (4 E));
281single_tuple_impl!(6: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F));
282single_tuple_impl!(7: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F), (6 G));
283single_tuple_impl!(8: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F), (6 G), (7 H));
284single_tuple_impl!(9: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F), (6 G), (7 H), (8 I));
285single_tuple_impl!(10: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F), (6 G), (7 H), (8 I), (9 J));
286single_tuple_impl!(11: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F), (6 G), (7 H), (8 I), (9 J), (10 K));
287single_tuple_impl!(12: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F), (6 G), (7 H), (8 I), (9 J), (10 K), (11 L));
288single_tuple_impl!(13: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F), (6 G), (7 H), (8 I), (9 J), (10 K), (11 L), (12 M));
289single_tuple_impl!(14: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F), (6 G), (7 H), (8 I), (9 J), (10 K), (11 L), (12 M), (13 N));
290single_tuple_impl!(15: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F), (6 G), (7 H), (8 I), (9 J), (10 K), (11 L), (12 M), (13 N), (14 O));
291single_tuple_impl!(16: (0 A), (1 B), (2 C), (3 D), (4 E), (5 F), (6 G), (7 H), (8 I), (9 J), (10 K), (11 L), (12 M), (13 N), (14 O), (15 P));
292
293macro_rules! impl_for_array_ref {
294    ($($N:literal)+) => {$(
295        // These are already generic, and there's a shedload of them, so lets
296        // avoid the compile time hit from making them all inline for now.
297        impl<T: ToSql + ?Sized> Sealed for &[&T; $N] {}
298        impl<T: ToSql + ?Sized> Params for &[&T; $N] {
299            fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()> {
300                stmt.bind_parameters(self)
301            }
302        }
303        impl<T: ToSql + ?Sized> Sealed for &[(&str, &T); $N] {}
304        impl<T: ToSql + ?Sized> Params for &[(&str, &T); $N] {
305            fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()> {
306                stmt.bind_parameters_named(self)
307            }
308        }
309        impl<T: ToSql> Sealed for [T; $N] {}
310        impl<T: ToSql> Params for [T; $N] {
311            #[inline]
312            fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()> {
313                stmt.bind_parameters(&self)
314            }
315        }
316    )+};
317}
318
319// Following libstd/libcore's (old) lead, implement this for arrays up to `[_;
320// 32]`. Note `[_; 0]` is intentionally omitted for coherence reasons, see the
321// note above the impl of `[&dyn ToSql; 0]` for more information.
322//
323// Note that this unfortunately means we can't use const generics here, but I
324// don't really think it matters -- users who hit that can use `params!` anyway.
325impl_for_array_ref!(
326    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
327    18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
328);
329
330/// Adapter type which allows any iterator over [`ToSql`] values to implement
331/// [`Params`].
332///
333/// This struct is created by the [`params_from_iter`] function.
334///
335/// This can be useful if you have something like an `&[String]` (of unknown
336/// length), and you want to use them with an API that wants something
337/// implementing `Params`. This way, you can avoid having to allocate storage
338/// for something like a `&[&dyn ToSql]`.
339///
340/// This essentially is only ever actually needed when dynamically generating
341/// SQL — static SQL (by definition) has the number of parameters known
342/// statically. As dynamically generating SQL is itself pretty advanced, this
343/// API is itself for advanced use cases (See "Realistic use case" in the
344/// examples).
345///
346/// # Example
347///
348/// ## Basic usage
349///
350/// ```rust,no_run
351/// use rusqlite::{params_from_iter, Connection, Result};
352/// use std::collections::BTreeSet;
353///
354/// fn query(conn: &Connection, ids: &BTreeSet<String>) -> Result<()> {
355///     assert_eq!(ids.len(), 3, "Unrealistic sample code");
356///
357///     let mut stmt = conn.prepare("SELECT * FROM users WHERE id IN (?1, ?2, ?3)")?;
358///     let _rows = stmt.query(params_from_iter(ids.iter()))?;
359///
360///     // use _rows...
361///     Ok(())
362/// }
363/// ```
364///
365/// ## Realistic use case
366///
367/// Here's how you'd use `ParamsFromIter` to call [`Statement::exists`] with a
368/// dynamic number of parameters.
369///
370/// ```rust,no_run
371/// use rusqlite::{Connection, Result};
372///
373/// pub fn any_active_users(conn: &Connection, usernames: &[String]) -> Result<bool> {
374///     if usernames.is_empty() {
375///         return Ok(false);
376///     }
377///
378///     // Note: `repeat_vars` never returns anything attacker-controlled, so
379///     // it's fine to use it in a dynamically-built SQL string.
380///     let vars = repeat_vars(usernames.len());
381///
382///     let sql = format!(
383///         // In practice this would probably be better as an `EXISTS` query.
384///         "SELECT 1 FROM user WHERE is_active AND name IN ({}) LIMIT 1",
385///         vars,
386///     );
387///     let mut stmt = conn.prepare(&sql)?;
388///     stmt.exists(rusqlite::params_from_iter(usernames))
389/// }
390///
391/// // Helper function to return a comma-separated sequence of `?`.
392/// // - `repeat_vars(0) => panic!(...)`
393/// // - `repeat_vars(1) => "?"`
394/// // - `repeat_vars(2) => "?,?"`
395/// // - `repeat_vars(3) => "?,?,?"`
396/// // - ...
397/// fn repeat_vars(count: usize) -> String {
398///     assert_ne!(count, 0);
399///     let mut s = "?,".repeat(count);
400///     // Remove trailing comma
401///     s.pop();
402///     s
403/// }
404/// ```
405///
406/// That is fairly complex, and even so would need even more work to be fully
407/// production-ready:
408///
409/// - production code should ensure `usernames` isn't so large that it will
410///   surpass [`conn.limit(Limit::SQLITE_LIMIT_VARIABLE_NUMBER)`][limits],
411///   chunking if too large. (Note that the limits api requires rusqlite to have
412///   the "limits" feature).
413///
414/// - `repeat_vars` can be implemented in a way that avoids needing to allocate
415///   a String.
416///
417/// - Etc...
418///
419/// [limits]: crate::Connection::limit
420///
421/// This complexity reflects the fact that `ParamsFromIter` is mainly intended
422/// for advanced use cases — most of the time you should know how many
423/// parameters you have statically (and if you don't, you're either doing
424/// something tricky, or should take a moment to think about the design).
425#[derive(Clone, Debug)]
426pub struct ParamsFromIter<I>(I);
427
428/// Constructor function for a [`ParamsFromIter`]. See its documentation for
429/// more.
430#[inline]
431pub fn params_from_iter<I>(iter: I) -> ParamsFromIter<I>
432where
433    I: IntoIterator,
434    I::Item: ToSql,
435{
436    ParamsFromIter(iter)
437}
438
439impl<I> Sealed for ParamsFromIter<I>
440where
441    I: IntoIterator,
442    I::Item: ToSql,
443{
444}
445
446impl<I> Params for ParamsFromIter<I>
447where
448    I: IntoIterator,
449    I::Item: ToSql,
450{
451    #[inline]
452    fn __bind_in(self, stmt: &mut Statement<'_>) -> Result<()> {
453        stmt.bind_parameters(self.0)
454    }
455}